|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM365381438 |
003 |
DE-627 |
005 |
20231226101537.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.3c01704
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1217.xml
|
035 |
|
|
|a (DE-627)NLM365381438
|
035 |
|
|
|a (NLM)38047182
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gavara-Edo, Miguel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Design and Processing as Ultrathin Films of a Sublimable Iron(II) Spin Crossover Material Exhibiting Efficient and Fast Light-Induced Spin Transition
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.12.2023
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Published by American Chemical Society.
|
520 |
|
|
|a Materials based on spin crossover (SCO) molecules have centered the attention in molecular magnetism for more than 40 years as they provide unique examples of multifunctional and stimuli-responsive materials, which can be then integrated into electronic devices to exploit their molecular bistability. This process often requires the preparation of thermally stable SCO molecules that can sublime and remain intact in contact with surfaces. However, the number of robust sublimable SCO molecules is still very scarce. Here, we report a novel example of this kind. It is based on a neutral iron(II) coordination complex formulated as [Fe(neoim)2], where neoimH is the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline. In the first part, a comprehensive study, which covers the synthesis and magnetostructural characterization of the [Fe(neoim)2] complex as a bulk microcrystalline material, is reported. Then, in the second part, we investigate the suitability of this material to form thin films through high-vacuum sublimation. Finally, the retainment of all present SCO capabilities in the bulk when the material is processed is thoroughly studied by means of X-ray absorption spectroscopy. In particular, a very efficient and fast light-induced spin transition (LIESST effect) has been observed, even for ultrathin films of 15 nm
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Valverde-Muñoz, Francisco Javier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Muñoz, M Carmen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Elidrissi Moubtassim, Safaa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marques-Moros, Francisco
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Herrero-Martín, Javier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Znovjyak, Kateryna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Seredyuk, Maksym
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Real, José Antonio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Coronado, Eugenio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 35(2023), 22 vom: 28. Nov., Seite 9591-9602
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:22
|g day:28
|g month:11
|g pages:9591-9602
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.3c01704
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 22
|b 28
|c 11
|h 9591-9602
|