|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365301752 |
003 |
DE-627 |
005 |
20240404234436.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3338268
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1364.xml
|
035 |
|
|
|a (DE-627)NLM365301752
|
035 |
|
|
|a (NLM)38039178
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Yikai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Knockoffs-SPR
|b Clean Sample Selection in Learning With Noisy Labels
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.04.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this article, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Fu, Yanwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Xinwei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 5 vom: 03. Apr., Seite 3242-3256
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:5
|g day:03
|g month:04
|g pages:3242-3256
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3338268
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 5
|b 03
|c 04
|h 3242-3256
|