TCDM : Transformational Complexity Based Distortion Metric for Perceptual Point Cloud Quality Assessment

The goal of objective point cloud quality assessment (PCQA) research is to develop quantitative metrics that measure point cloud quality in a perceptually consistent manner. Merging the research of cognitive science and intuition of the human visual system (HVS), in this article, we evaluate the poi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 10 vom: 12. Sept., Seite 6707-6724
1. Verfasser: Zhang, Yujie (VerfasserIn)
Weitere Verfasser: Yang, Qi, Zhou, Yifei, Xu, Xiaozhong, Yang, Le, Xu, Yiling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365301671
003 DE-627
005 20240906232529.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3338359  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM365301671 
035 |a (NLM)38039169 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yujie  |e verfasserin  |4 aut 
245 1 0 |a TCDM  |b Transformational Complexity Based Distortion Metric for Perceptual Point Cloud Quality Assessment 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The goal of objective point cloud quality assessment (PCQA) research is to develop quantitative metrics that measure point cloud quality in a perceptually consistent manner. Merging the research of cognitive science and intuition of the human visual system (HVS), in this article, we evaluate the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference, which in practice can be approximated by the code length of one point cloud when the other is given. For this purpose, we first make space segmentation for the reference and distorted point clouds based on a 3D Voronoi diagram to obtain a series of local patch pairs. Next, inspired by the predictive coding theory, we utilize a space-aware vector autoregressive (SA-VAR) model to encode the geometry and color channels of each reference patch with and without the distorted patch, respectively. Assuming that the residual errors follow the multi-variate Gaussian distributions, the self-complexity of the reference and transformational complexity between the reference and distorted samples are computed using covariance matrices. Additionally, the prediction terms generated by SA-VAR are introduced as one auxiliary feature to promote the final quality prediction. The effectiveness of the proposed transformational complexity based distortion metric (TCDM) is evaluated through extensive experiments conducted on five public point cloud quality assessment databases. The results demonstrate that TCDM achieves state-of-the-art (SOTA) performance, and further analysis confirms its robustness in various scenarios 
650 4 |a Journal Article 
700 1 |a Yang, Qi  |e verfasserin  |4 aut 
700 1 |a Zhou, Yifei  |e verfasserin  |4 aut 
700 1 |a Xu, Xiaozhong  |e verfasserin  |4 aut 
700 1 |a Yang, Le  |e verfasserin  |4 aut 
700 1 |a Xu, Yiling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 10 vom: 12. Sept., Seite 6707-6724  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:10  |g day:12  |g month:09  |g pages:6707-6724 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3338359  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 10  |b 12  |c 09  |h 6707-6724