The Role of Text in Visualizations : How Annotations Shape Perceptions of Bias and Influence Predictions

This paper investigates the role of text in visualizations, specifically the impact of text position, semantic content, and biased wording. Two empirical studies were conducted based on two tasks (predicting data trends and appraising bias) using two visualization types (bar and line charts). While...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 10 vom: 12. Sept., Seite 6787-6800
1. Verfasser: Stokes, Chase (VerfasserIn)
Weitere Verfasser: Bearfield, Cindy Xiong, Hearst, Marti A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365301655
003 DE-627
005 20240906232529.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3338451  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM365301655 
035 |a (NLM)38039168 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Stokes, Chase  |e verfasserin  |4 aut 
245 1 4 |a The Role of Text in Visualizations  |b How Annotations Shape Perceptions of Bias and Influence Predictions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper investigates the role of text in visualizations, specifically the impact of text position, semantic content, and biased wording. Two empirical studies were conducted based on two tasks (predicting data trends and appraising bias) using two visualization types (bar and line charts). While the addition of text had a minimal effect on how people perceive data trends, there was a significant impact on how biased they perceive the authors to be. This finding revealed a relationship between the degree of bias in textual information and the perception of the authors' bias. Exploratory analyses support an interaction between a person's prediction and the degree of bias they perceived. This paper also develops a crowdsourced method for creating chart annotations that range from neutral to highly biased. This research highlights the need for designers to mitigate potential polarization of readers' opinions based on how authors' ideas are expressed 
650 4 |a Journal Article 
700 1 |a Bearfield, Cindy Xiong  |e verfasserin  |4 aut 
700 1 |a Hearst, Marti A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 10 vom: 12. Sept., Seite 6787-6800  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:10  |g day:12  |g month:09  |g pages:6787-6800 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3338451  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 10  |b 12  |c 09  |h 6787-6800