Interpretable Neural Networks for Video Separation : Deep Unfolding RPCA With Foreground Masking

We present two deep unfolding neural networks for the simultaneous tasks of background subtraction and foreground detection in video. Unlike conventional neural networks based on deep feature extraction, we incorporate domain-knowledge models by considering a masked variation of the robust principal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2023) vom: 29., Seite 108-122
1. Verfasser: Joukovsky, Boris (VerfasserIn)
Weitere Verfasser: Eldar, Yonina C, Deligiannis, Nikos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365301612
003 DE-627
005 20231227132150.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3336176  |2 doi 
028 5 2 |a pubmed24n1226.xml 
035 |a (DE-627)NLM365301612 
035 |a (NLM)38039164 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Joukovsky, Boris  |e verfasserin  |4 aut 
245 1 0 |a Interpretable Neural Networks for Video Separation  |b Deep Unfolding RPCA With Foreground Masking 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present two deep unfolding neural networks for the simultaneous tasks of background subtraction and foreground detection in video. Unlike conventional neural networks based on deep feature extraction, we incorporate domain-knowledge models by considering a masked variation of the robust principal component analysis problem (RPCA). With this approach, we separate video clips into low-rank and sparse components, respectively corresponding to the backgrounds and foreground masks indicating the presence of moving objects. Our models, coined ROMAN-S and ROMAN-R, map the iterations of two alternating direction of multipliers methods (ADMM) to trainable convolutional layers, and the proximal operators are mapped to non-linear activation functions with trainable thresholds. This approach leads to lightweight networks with enhanced interpretability that can be trained on limited data. In ROMAN-S, the correlation in time of successive binary masks is controlled with side-information based on l1 - l1 minimization. ROMAN-R enhances the foreground detection by learning a dictionary of atoms to represent the moving foreground in a high-dimensional feature space and by using reweighted- l1 - l1 minimization. Experiments are conducted on both synthetic and real video datasets, for which we also include an analysis of the generalization to unseen clips. Comparisons are made with existing deep unfolding RPCA neural networks, which do not use a mask formulation for the foreground, and with a 3D U-Net baseline. Results show that our proposed models outperform other deep unfolding networks, as well as the untrained optimization algorithms. ROMAN-R, in particular, is competitive with the U-Net baseline for foreground detection, with the additional advantage of providing video backgrounds and requiring substantially fewer training parameters and smaller training sets 
650 4 |a Journal Article 
700 1 |a Eldar, Yonina C  |e verfasserin  |4 aut 
700 1 |a Deligiannis, Nikos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2023) vom: 29., Seite 108-122  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2023  |g day:29  |g pages:108-122 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3336176  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |b 29  |h 108-122