An Ultrahigh Power Density and Ultralow Wear GaN-Based Tribovoltaic Nanogenerator for Sliding Ball Bearing as Self-Powered Wireless Sensor Node

© 2023 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 6 vom: 13. Feb., Seite e2310098
Auteur principal: Zhang, Zhi (Auteur)
Autres auteurs: Wu, Ning, Gong, Likun, Luan, Ruifei, Cao, Jie, Zhang, Chi
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article frictional energy harvesting gallium nitride low wear sliding bearing tribovoltaic effect
Description
Résumé:© 2023 Wiley-VCH GmbH.
The tribovoltaic effect is regarded as a newly discovered semiconductor effect for mechanical-to-electrical energy conversion. However, tribovoltaic nanogenerators (TVNGs) are widely limited by low output power and poor wear resistance for device integration and application. Here, this work invents a TVNG using a ball-on-disk structure composed of gallium nitride (GaN) and steel ball. It exhibits an open-circuit voltage exceeding 130 V and an ultrahigh normalized average power density of 24.6 kW m-2 Hz-1 , which is a 282-fold improvement compared to previous works. Meanwhile, this TVNG reaches an ultralow wear rate of 5 × 10-7 mm3 N-1 m-1 at a maximum contact pressure of 906.6 MPa, surpassing the TVNG composed of Si by three orders of magnitude due to the local concentrated injection of frictional energy. Based on the TVNG, this work constructs the first tribovoltaic bearing and achieves sensing signal transmission within 16 s (300 rpm) by integrating a management circuit, a transmission module, a relay, and receiving terminals, which enables the monitoring of ambient pressure and temperature. This work realizes a GaN-based TVNG with high-performance and low wear simultaneously, demonstrating great potential for intelligent components and self-powered sensor nodes in the industrial Internet of Things
Description:Date Revised 08.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202310098