KBStyle : Fast Style Transfer Using a 200 KB Network With Symmetric Knowledge Distillation

Convolutional Neural Networks (CNNs) have achieved remarkable progress in arbitrary artistic style transfer. However, the model size of existing state-of-the-art (SOTA) style transfer algorithms is immense, leading to enormous computational costs and memory demand. It makes real-time and high resolu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2023) vom: 29., Seite 82-94
1. Verfasser: Chen, Wenshu (VerfasserIn)
Weitere Verfasser: Huang, Yujie, Wang, Mingyu, Wu, Xiaolin, Zeng, Xiaoyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365239259
003 DE-627
005 20231227132140.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3335828  |2 doi 
028 5 2 |a pubmed24n1226.xml 
035 |a (DE-627)NLM365239259 
035 |a (NLM)38032789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Wenshu  |e verfasserin  |4 aut 
245 1 0 |a KBStyle  |b Fast Style Transfer Using a 200 KB Network With Symmetric Knowledge Distillation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolutional Neural Networks (CNNs) have achieved remarkable progress in arbitrary artistic style transfer. However, the model size of existing state-of-the-art (SOTA) style transfer algorithms is immense, leading to enormous computational costs and memory demand. It makes real-time and high resolution hard for GPUs with limited memory and limits the application on mobile devices. This paper proposes a novel arbitrary artistic style transfer algorithm, KBStyle, whose model size is only 200 KB. Firstly, we design a style transfer network where the style encoder, content encoder, and corresponding decoder are custom designed to guarantee low computational cost and high shape retention. Besides, the weighted style loss function is presented to improve the performance of style migration. Then, we propose a novel knowledge distillation method (Symmetric Knowledge Distillation, SKD) for encoder-decoder-based style transfer models, which redefines the knowledge and symmetrically compresses the encoder and decoder. With the SKD, the proposed style transfer network is further compressed by 14 times to achieve the KBStyle. Experimental results demonstrate that the proposed SKD method achieves comparable results with other SOTA knowledge distillation algorithms for style transfer. Besides, the proposed KBStyle achieves high-quality stylized images. And the inference time of the KBStyle on an Nvidia TITAN RTX GPU is only 20 ms when the resolutions of the content image and style image are both 2k-resolution ( 2048×1080 ). Moreover, the 200 KB model size of KBStyle is much smaller than the SOTA models and facilitates style transfer on mobile devices 
650 4 |a Journal Article 
700 1 |a Huang, Yujie  |e verfasserin  |4 aut 
700 1 |a Wang, Mingyu  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Zeng, Xiaoyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2023) vom: 29., Seite 82-94  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2023  |g day:29  |g pages:82-94 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3335828  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |b 29  |h 82-94