Differential impacts of interactions between Serendipita indica, Chlorella vulgaris, Ulva lactuca and Padina pavonica on Basil (Ocimum basilicumL.)

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 206(2024) vom: 13. Jan., Seite 108218
1. Verfasser: Abudeshesh, Rehab M (VerfasserIn)
Weitere Verfasser: Aboul-Nasr, Amal M, Khairy, Hanan M, Atia, Mohamed A M, Sabra, Mayada A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Algal extracts Crop productivity Endophyte Microbial interaction Plant growth-promoting fungi Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Plant biostimulants (PBs) are used globally to increase crop yield and productivity. PBs such as (Serendipita indica) or algal extracts stimulate and accelerate plant physiological processes. The physiological, ecological, and biochemical effects of (Serendipita indica) or algal extracts individually and in combination on basil plant (Ocimum basilicum L.) were investigated. Macroalgae samples were collected from Abu Qir, Alexandria, Egypt. The growth parameters, chlorophyll index, and biochemical composition of basil were analyzed at 90th day. The (Chlorella vulgaris) + (Serendipita indica) (MI + F) treatment increased chlorophyll index by 61.7% (SPAD) compared to control. (Chlorella vulgaris) had the highest growth hormones, including GA3 at 158.2 ppb, GA4 at 149.1 ppb, GA7 at 142.6 ppb, IAA at 136.6 ppb, and TC at 130.9 ppb, while (Ulva lactuca) had the lowest. The MI + F treatment yielded the highest essential oil and antioxidant values. Treatment with (Chlorella vulgaris) increased S. indica colonization by 66%. In contrast, Ulva lactuca and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. (Ulva lactuca) and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. Combined treatments had a greater influence on basil performance than the individual treatments. The evidence of synergistic/additive benefits to plants performance due to the interactive effects of (Chlorella vulgaris) and (Serendipita indica) had been studied. Complementary modes of action between (Chlorella vulgaris) and (Serendipita indica), through their components newly emerging properties on basil, may explain observed synergistic effects. This study explores the potential of microbial-algal interactions, particularly (Chlorella vulgaris) and (Serendipita indica), as innovative plant biostimulants. These interactions demonstrate positive effects on basil growth, offering promise for more effective microbial-based formulations to enhance crop productivity and sustainability in agriculture. These novelties will help create a second generation of PBs with integrated and complementary actions
Beschreibung:Date Completed 14.02.2024
Date Revised 14.02.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.108218