|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365107689 |
003 |
DE-627 |
005 |
20240307232106.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3335152
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1319.xml
|
035 |
|
|
|a (DE-627)NLM365107689
|
035 |
|
|
|a (NLM)38019625
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lis, Krzysztof
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Detecting Road Obstacles by Erasing Them
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Vehicles can encounter a myriad of obstacles on the road, and it is impossible to record them all beforehand to train a detector. Instead, we select image patches and inpaint them with the surrounding road texture, which tends to remove obstacles from those patches. We then use a network trained to recognize discrepancies between the original patch and the inpainted one, which signals an erased obstacle
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Honari, Sina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fua, Pascal
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Salzmann, Mathieu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 4 vom: 01. März, Seite 2450-2460
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:4
|g day:01
|g month:03
|g pages:2450-2460
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3335152
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 4
|b 01
|c 03
|h 2450-2460
|