Dynamic Dense Graph Convolutional Network for Skeleton-Based Human Motion Prediction
Graph Convolutional Networks (GCN) which typically follows a neural message passing framework to model dependencies among skeletal joints has achieved high success in skeleton-based human motion prediction task. Nevertheless, how to construct a graph from a skeleton sequence and how to perform messa...
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 1-15 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2024
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Sujets: | Journal Article |
| Accès en ligne |
Volltext |