Dynamic Dense Graph Convolutional Network for Skeleton-Based Human Motion Prediction
Graph Convolutional Networks (GCN) which typically follows a neural message passing framework to model dependencies among skeletal joints has achieved high success in skeleton-based human motion prediction task. Nevertheless, how to construct a graph from a skeleton sequence and how to perform messa...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 1-15 | 
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , | 
| Format: | Online-Aufsatz | 
| Sprache: | English | 
| Veröffentlicht: | 
            
            2024
         | 
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society | 
| Schlagworte: | Journal Article | 
| Online verfügbar | 
                            Volltext |