Dynamic Dense Graph Convolutional Network for Skeleton-Based Human Motion Prediction
Graph Convolutional Networks (GCN) which typically follows a neural message passing framework to model dependencies among skeletal joints has achieved high success in skeleton-based human motion prediction task. Nevertheless, how to construct a graph from a skeleton sequence and how to perform messa...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 1-15 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |