Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.)

Copyright © 2023. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 206(2024) vom: 07. Jan., Seite 108222
1. Verfasser: Sabir, Irfan Ali (VerfasserIn)
Weitere Verfasser: Manzoor, Muhammad Aamir, Shah, Iftikhar Hussain, Ahmad, Zishan, Liu, Xunju, Alam, Pravej, Wang, Yuxuan, Sun, Wanxia, Wang, Jiyuan, Liu, Ruie, Jiu, Songtao, Zhang, Caixi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Bud dormancy Forwarding culture Global warming Prunus avium Transcriptomic analysis α-Fe(2)O(3) Gibberellins Hydrogen Cyanide 2WTB3V159F Plant Proteins
LEADER 01000caa a22002652 4500
001 NLM365075434
003 DE-627
005 20240214232944.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2023.108222  |2 doi 
028 5 2 |a pubmed24n1293.xml 
035 |a (DE-627)NLM365075434 
035 |a (NLM)38016371 
035 |a (PII)S0981-9428(23)00733-7 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sabir, Irfan Ali  |e verfasserin  |4 aut 
245 1 0 |a Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.) 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.02.2024 
500 |a Date Revised 14.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023. Published by Elsevier Masson SAS. 
520 |a Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees 
650 4 |a Journal Article 
650 4 |a Bud dormancy 
650 4 |a Forwarding culture 
650 4 |a Global warming 
650 4 |a Prunus avium 
650 4 |a Transcriptomic analysis 
650 4 |a α-Fe(2)O(3) 
650 7 |a Gibberellins  |2 NLM 
650 7 |a Hydrogen Cyanide  |2 NLM 
650 7 |a 2WTB3V159F  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
700 1 |a Manzoor, Muhammad Aamir  |e verfasserin  |4 aut 
700 1 |a Shah, Iftikhar Hussain  |e verfasserin  |4 aut 
700 1 |a Ahmad, Zishan  |e verfasserin  |4 aut 
700 1 |a Liu, Xunju  |e verfasserin  |4 aut 
700 1 |a Alam, Pravej  |e verfasserin  |4 aut 
700 1 |a Wang, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Sun, Wanxia  |e verfasserin  |4 aut 
700 1 |a Wang, Jiyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Ruie  |e verfasserin  |4 aut 
700 1 |a Jiu, Songtao  |e verfasserin  |4 aut 
700 1 |a Zhang, Caixi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 206(2024) vom: 07. Jan., Seite 108222  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:206  |g year:2024  |g day:07  |g month:01  |g pages:108222 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2023.108222  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 206  |j 2024  |b 07  |c 01  |h 108222