NeUDF : Learning Neural Unsigned Distance Fields With Volume Rendering

Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 28. Apr., Seite 2364-2377
1. Verfasser: Liu, Yu-Tao (VerfasserIn)
Weitere Verfasser: Wang, Li, Yang, Jie, Chen, Weikai, Meng, Xiaoxu, Yang, Bo, Gao, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM365068845
003 DE-627
005 20250305120931.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3335353  |2 doi 
028 5 2 |a pubmed25n1216.xml 
035 |a (DE-627)NLM365068845 
035 |a (NLM)38015705 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yu-Tao  |e verfasserin  |4 aut 
245 1 0 |a NeUDF  |b Learning Neural Unsigned Distance Fields With Volume Rendering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries 
650 4 |a Journal Article 
700 1 |a Wang, Li  |e verfasserin  |4 aut 
700 1 |a Yang, Jie  |e verfasserin  |4 aut 
700 1 |a Chen, Weikai  |e verfasserin  |4 aut 
700 1 |a Meng, Xiaoxu  |e verfasserin  |4 aut 
700 1 |a Yang, Bo  |e verfasserin  |4 aut 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 28. Apr., Seite 2364-2377  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:28  |g month:04  |g pages:2364-2377 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3335353  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 28  |c 04  |h 2364-2377