Roses Have Thorns : Understanding the Downside of Oncological Care Delivery Through Visual Analytics and Sequential Rule Mining

Personalized head and neck cancer therapeutics have greatly improved survival rates for patients, but are often leading to understudied long-lasting symptoms which affect quality of life. Sequential rule mining (SRM) is a promising unsupervised machine learning method for predicting longitudinal pat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 05. Jan., Seite 1227-1237
1. Verfasser: Floricel, Carla (VerfasserIn)
Weitere Verfasser: Wentzel, Andrew, Mohamed, Abdallah, Fuller, C David, Canahuate, Guadalupe, Marai, G Elisabeta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural
LEADER 01000caa a22002652 4500
001 NLM365068748
003 DE-627
005 20250106231843.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326939  |2 doi 
028 5 2 |a pubmed24n1655.xml 
035 |a (DE-627)NLM365068748 
035 |a (NLM)38015695 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Floricel, Carla  |e verfasserin  |4 aut 
245 1 0 |a Roses Have Thorns  |b Understanding the Downside of Oncological Care Delivery Through Visual Analytics and Sequential Rule Mining 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.12.2023 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Personalized head and neck cancer therapeutics have greatly improved survival rates for patients, but are often leading to understudied long-lasting symptoms which affect quality of life. Sequential rule mining (SRM) is a promising unsupervised machine learning method for predicting longitudinal patterns in temporal data which, however, can output many repetitive patterns that are difficult to interpret without the assistance of visual analytics. We present a data-driven, human-machine analysis visual system developed in collaboration with SRM model builders in cancer symptom research, which facilitates mechanistic knowledge discovery in large scale, multivariate cohort symptom data. Our system supports multivariate predictive modeling of post-treatment symptoms based on during-treatment symptoms. It supports this goal through an SRM, clustering, and aggregation back end, and a custom front end to help develop and tune the predictive models. The system also explains the resulting predictions in the context of therapeutic decisions typical in personalized care delivery. We evaluate the resulting models and system with an interdisciplinary group of modelers and head and neck oncology researchers. The results demonstrate that our system effectively supports clinical and symptom research 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Wentzel, Andrew  |e verfasserin  |4 aut 
700 1 |a Mohamed, Abdallah  |e verfasserin  |4 aut 
700 1 |a Fuller, C David  |e verfasserin  |4 aut 
700 1 |a Canahuate, Guadalupe  |e verfasserin  |4 aut 
700 1 |a Marai, G Elisabeta  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 1 vom: 05. Jan., Seite 1227-1237  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:05  |g month:01  |g pages:1227-1237 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326939  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 05  |c 01  |h 1227-1237