|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365062588 |
003 |
DE-627 |
005 |
20231227132119.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c03229
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1226.xml
|
035 |
|
|
|a (DE-627)NLM365062588
|
035 |
|
|
|a (NLM)38015071
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Jiyan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Solar-driven atmospheric water harvesting technology has the advantage of not being limited by geography and has great potential in solving the freshwater crisis. Here, we first propose a purely natural and degradable superhydrophilic composite macroporous hygroscopic material by applying guar gum (GG) to atmospheric water harvesting. The material consists of GG-cellulose nanofibers (CNFs) as a porous substrate material, limiting the hygroscopic factor lithium chloride (LiCl) in its three-dimensional (3D) network structure, and carbon nanotubes (CNTs) play a photothermal conversion role. The composite material has a high light absorption rate of more than 95%, and the macroporous structure (20-60 μm) allows for rapid adsorption/desorption kinetics. At 35 °C and 90% relative humidity (RH), the moisture absorption capacity is as high as 1.94 g/g. Under 100 mW/cm2 irradiation, the absorbed water is almost completely desorbed within 3 h, and the water harvesting performance is stable in 10 cycles. Moreover, liquid water was successfully collected in an actual outdoor experiment. This work demonstrates the great potential of biomass materials in the field of atmospheric water collection and provides more opportunities for various energy and sustainable applications in the future
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xing, Guoyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiao, Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zihao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Hanxue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Lingxiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Junping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, An
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 49 vom: 12. Dez., Seite 18161-18170
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:49
|g day:12
|g month:12
|g pages:18161-18170
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c03229
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 49
|b 12
|c 12
|h 18161-18170
|