Illuminating the Role of Mo Defective 2D Monolayer MoTe2 toward Highly Efficient Electrocatalytic O2 Reduction Reaction

The fuel cell is one of the solutions to current energy problems as it comes under green and renewable energy technology. The primary limitation of a fuel cell lies in the relatively slow rate of oxygen reduction reactions (ORR) that take place on the cathode, and this is an all-important reaction....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 49 vom: 12. Dez., Seite 17700-17712
1. Verfasser: Upadhyay, Shrish Nath (VerfasserIn)
Weitere Verfasser: Halba, Dikeshwar, Yadav, Lokesh, Pakhira, Srimanta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The fuel cell is one of the solutions to current energy problems as it comes under green and renewable energy technology. The primary limitation of a fuel cell lies in the relatively slow rate of oxygen reduction reactions (ORR) that take place on the cathode, and this is an all-important reaction. An efficient electrocatalyst provides the advancement of green energy-based fuel cell technology, and it can speed up the ORR process. The present work provides the study of non-noble metal-based electrocatalyst for ORR. We have computationally designed a 3 × 3 supercell model of metal defective (Mo-defective) MoTe2 transition metal dichalcogenide (TMD) material to study its electrocatalytic activity toward ORR. This work provides a comprehensive analysis of all reaction intermediates that play a role in ORR on the surfaces of metal-deficient MoTe2. The first-principles-based dispersion-corrected density functional theory (in short DFT-D) method was implemented to analyze the reaction-free energies (ΔG) for each ORR reaction step. The present study indicates that the ORR on the surface of metal-defective MoTe2 follows the 4e- transfer mechanism. This study suggests that the 2D Mo-defective MoTe2 TMD has the potential to be an effective ORR electrocatalyst in fuel cells
Beschreibung:Date Revised 12.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02166