|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365060119 |
003 |
DE-627 |
005 |
20231227132118.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c02140
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1226.xml
|
035 |
|
|
|a (DE-627)NLM365060119
|
035 |
|
|
|a (NLM)38014812
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rajeeve, Anakha D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a β-Cyclodextrin-Stabilized CuO/MXene Nanocomposite as an Electrode Material for High-Performance Supercapacitors
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Supercapacitors are the best energy storage systems due to their high power density, quick charge/discharge rate, and long-term reliability. In this study, β-cyclodextrin-stabilized CuO nanoparticles (CuOβCD NPs) were synthesized through a simple reduction method and anchored on the surface of MXene nanosheets in three different proportions (1:1, 4:1, and 1:4) to obtain CuO@βCD/MXene nanocomposites through the wet-impregnation method. The formation of CuO@βCD NPs and their physicochemical characteristics were verified by XRD, XPS, FE-SEM, and HR-TEM analysis. The actual focus is on the evaluation of the electrochemical performances of CuO@βCD, MXene, and CuO@βCD/MXene nanocomposites for supercapacitor applications. The cyclic voltammetry and galvanostatic charge-discharge analysis revealed the pseudocapacitance and an improved specific capacitance of 1693.43 F g-1 at 0.90 A g-1 for the CuO@βCD/MXene (1:1) nanocomposite. The electrochemical impedance analysis displays superior electrical conductivity with a low charge transfer resistance value on incorporating CuO@βCD between the MXene layers. Furthermore, the CuO@βCD/MXene (1:1) nanocomposite exhibited improved long-term cycling stability by retaining 86% of its initial specific capacitance even after the 10,000th cycle at the current density of 4.54 A g-1. Based on the electrochemical performance, the CuO@βCD/MXene (1:1) nanocomposite proves its suitability as an electrode material for supercapacitor application with long-term cycling stability and rate capability
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yamuna, Ramasamy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vinoba, Mari
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bhagiyalakshmi, Margandan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 49 vom: 12. Dez., Seite 17688-17699
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:49
|g day:12
|g month:12
|g pages:17688-17699
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c02140
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 49
|b 12
|c 12
|h 17688-17699
|