A critical review of municipal solid waste hydraulic conductivity : A mini review

This study is a critical review of municipal solid waste (MSW) hydraulic conductivity that includes investigation of the influence of vertical stress, dry unit weight and degradation. A total of 56 studies were compiled that included laboratory-, pilot- and landfill-scale hydraulic conductivity expe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 42(2024), 11 vom: 15. Nov., Seite 997-1007
1. Verfasser: Karimi, Sajjad (VerfasserIn)
Weitere Verfasser: Bareither, Christopher A, Scalia, Joseph 4th
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Review Decomposition hydraulic conductivity landfill municipal solid waste stress unit weight Solid Waste
Beschreibung
Zusammenfassung:This study is a critical review of municipal solid waste (MSW) hydraulic conductivity that includes investigation of the influence of vertical stress, dry unit weight and degradation. A total of 56 studies were compiled that included laboratory-, pilot- and landfill-scale hydraulic conductivity experiments. Compacting waste and increasing vertical stress reduce MSW hydraulic conductivity via reshaping the pore networks throughout the waste matrix, reducing the void ratio and increasing tortuosity. However, the magnitude of reduction in hydraulic conductivity is dependent on stress, waste composition and decomposition. Solid waste decomposition can have opposing effects on hydraulic conductivity. Some studies have indicated that an increase in MSW decomposition results in particle size reduction and settlement that reduces the void ratio and decreases hydraulic conductivity. Conversely, some studies indicate that waste decomposition reduces the solid mass, which increases the void ratio and creates larger flow paths that increase hydraulic conductivity. The data compilation, observations and key findings from this study are beneficial for solid waste practitioners to improve design, analysis and operation of MSW landfills
Beschreibung:Date Completed 01.11.2024
Date Revised 04.11.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X231204814