Artificial Photosynthetic System with Spatial Dual Reduction Site Enabling Enhanced Solar Hydrogen Production

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 9 vom: 01. März, Seite e2309199
1. Verfasser: Ruan, Xiaowen (VerfasserIn)
Weitere Verfasser: Meng, Depeng, Huang, Chengxiang, Xu, Minghua, Jiao, Dongxu, Cheng, Hui, Cui, Yi, Li, Zhiyun, Ba, Kaikai, Xie, Tengfeng, Zhang, Lei, Zhang, Wei, Leng, Jing, Jin, Shengye, Ravi, Sai Kishore, Jiang, Zhifeng, Zheng, Weitao, Cui, Xiaoqiang, Yu, Jiaguo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial photosynthetic system double S-scheme dual reduction site hydrogen evolution photocatalyst
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1  h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance
Beschreibung:Date Revised 02.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202309199