GRNet:Geometry Restoration for G-PCC Compressed Point Clouds Using Auxiliary Density Signaling

The lossy Geometry-based Point Cloud Compression (G-PCC) inevitably impairs the geometry information of point clouds, which deteriorates the quality of experience (QoE) in reconstruction and/or misleads decisions in tasks such as classification. To tackle it, this work proposes GRNet for the geometr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 10 vom: 01. Sept., Seite 6740-6753
1. Verfasser: Liu, Gexin (VerfasserIn)
Weitere Verfasser: Xue, Ruixiang, Li, Jiaxin, Ding, Dandan, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM365021326
003 DE-627
005 20240906232528.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3336936  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM365021326 
035 |a (NLM)38010929 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Gexin  |e verfasserin  |4 aut 
245 1 0 |a GRNet:Geometry Restoration for G-PCC Compressed Point Clouds Using Auxiliary Density Signaling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The lossy Geometry-based Point Cloud Compression (G-PCC) inevitably impairs the geometry information of point clouds, which deteriorates the quality of experience (QoE) in reconstruction and/or misleads decisions in tasks such as classification. To tackle it, this work proposes GRNet for the geometry restoration of G-PCC compressed large-scale point clouds. By analyzing the content characteristics of original and G-PCC compressed point clouds, we attribute the G-PCC distortion to two key factors: point vanishing and point displacement. Visible impairments on a point cloud are usually dominated by an individual factor or superimposed by both factors, which are determined by the density of the original point cloud. To this end, we employ two different models for coordinate reconstruction, termed Coordinate Expansion and Coordinate Refinement, to attack the point vanishing and displacement, respectively. In addition, 4-byte auxiliary density information is signaled in the bitstream to assist the selection of Coordinate Expansion, Coordinate Refinement, or their combination. Before being fed into the coordinate reconstruction module, the G-PCC compressed point cloud is first processed by a Feature Analysis Module for multiscale information fusion, in which kNN-based Transformer is leveraged at each scale to adaptively characterize neighborhood geometric dynamics for effective restoration. Following the common test conditions recommended in the MPEG standardization committee, GRNet significantly improves the G-PCC anchor and remarkably outperforms state-of-the-art methods on a great variety of point clouds (e.g., solid, dense, and sparse samples) both quantitatively and qualitatively. Meanwhile, GRNet runs fairly fast and uses a smaller-size model when compared with existing learning-based approaches, making it attractive to industry practitioners 
650 4 |a Journal Article 
700 1 |a Xue, Ruixiang  |e verfasserin  |4 aut 
700 1 |a Li, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Ding, Dandan  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 10 vom: 01. Sept., Seite 6740-6753  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:10  |g day:01  |g month:09  |g pages:6740-6753 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3336936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 10  |b 01  |c 09  |h 6740-6753