|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM365014400 |
003 |
DE-627 |
005 |
20240208231929.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202309023
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1284.xml
|
035 |
|
|
|a (DE-627)NLM365014400
|
035 |
|
|
|a (NLM)38010233
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Huang, Xiaochun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Experimental Realization of Monolayer α-Tellurene
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a 2D materials emerge as a versatile platform for developing next-generation devices. The experimental realization of novel artificial 2D atomic crystals, which does not have bulk counterparts in nature, is still challenging and always requires new physical or chemical processes. Monolayer α-tellurene is predicted to be a stable 2D allotrope of tellurium (Te), which has great potential for applications in high-performance field-effect transistors. However, the synthesis of monolayer α-tellurene remains elusive because of its complex lattice configuration, in which the Te atoms are stacked in tri-layers in an octahedral fashion. Here, a self-assemble approach, using three atom-long Te chains derived from the dynamic non-equilibrium growth of an a-Si:Te alloy as building blocks, is reported for the epitaxial growth of monolayer α-tellurene on a Sb2 Te3 substrate. By combining scanning tunneling microscopy/spectroscopy with density functional theory calculations, the surface morphology and electronic structure of monolayer α-tellurene are revealed and the underlying growth mechanism is determined. The successful synthesis of monolayer α-tellurene opens up the possibility for the application of this new single-element 2D material in advanced electronic devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a monolayer α-tellurene
|
650 |
|
4 |
|a scanning tunneling microscopy and spectroscopy
|
650 |
|
4 |
|a self-assembly
|
650 |
|
4 |
|a two-dimensional material
|
700 |
1 |
|
|a Xiong, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hao, Chunxue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Wenbin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sa, Baisheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wiebe, Jens
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wiesendanger, Roland
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 6 vom: 15. Feb., Seite e2309023
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:6
|g day:15
|g month:02
|g pages:e2309023
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202309023
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 6
|b 15
|c 02
|h e2309023
|