High Mechanical Strength Alloy-like Minerals Prepared by Inorganic Ionic Co-cross-linking
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 3 vom: 01. Jan., Seite e2308017 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article alloy-like minerals compound ionic oligomers mechanical strength phase transition |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. Alloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO3 )x (PO4 )2(1- x )/3 (0 < x < 1, CaCPs) by cross-linking ionic oligomers. Unlike mixtures, these CaCPs exhibit a single temperature for the phase transition from amorphous to crystallized CaC (calcite) and CaP (hydroxyapatite). By heat-induced synchronous crystallization, dual-phase CaC/CaP with continuous crystallized boundaries are resembled to alloy-like minerals (ALMs). The mechanical properties of the ALMs are adjusted by tailoring their chemical compositions to reach a hardness of 5.6 GPa, which exceed those of control calcite and hydroxyapatite samples by 430% and 260%, respectively. This strategy expands the chemical scope of inorganic materials and holds promise for preparing high-performance minerals |
---|---|
Beschreibung: | Date Revised 18.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202308017 |