Strong p-d Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 6 vom: 01. Feb., Seite e2309648
1. Verfasser: Cao, Xueying (VerfasserIn)
Weitere Verfasser: Tian, Yadong, Ma, Jizhen, Guo, Weijian, Cai, Wenwen, Zhang, Jintao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article atomic doping carbon dioxide reduction electrocatalysis orbital hybridization
LEADER 01000caa a22002652 4500
001 NLM365008060
003 DE-627
005 20240208231929.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202309648  |2 doi 
028 5 2 |a pubmed24n1284.xml 
035 |a (DE-627)NLM365008060 
035 |a (NLM)38009597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Xueying  |e verfasserin  |4 aut 
245 1 0 |a Strong p-d Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Single-atom alloys (SAAs) show great potential for a variety of electrocatalytic reactions. However, the atomic orbital hybridization effect of SAAs on the electrochemical reactions is unclear yet. Herein, the in situ confinement of vanadium/molybdenum/tungsten atoms on bismuth nanosheet is shown to create SAAs with rich grain boundaries, respectively. With the detailed analysis of microstructure and composition, the strong p-d orbital hybridization between bismuth and vanadium enables the exceptional electrocatalytic performance for carbon dioxide (CO2 ) reduction with the Faradaic efficiency nearly 100% for C1 products in a wide potential range from -0.6 to -1.4 V, and a long-term electrolysis stability for 90 h. In-depth in situ investigations with theoretical computations reveal that the electron delocalization toward vanadium atoms via the p-d orbital hybridization evokes the bismuth active centers for efficient CO2 activation via the σ-donation of O-to-Bi, thus reduces protonation energy barriers for formate production. With such fundamental understanding, SAA electrocatalyst is employed to fabricated the solar-driven electrolytic cell of CO2 reduction and 5-hydroxymethylfurfural oxidation, achieving an outstanding 2,5-furandicarboxylic acid yield of 90.5%. This study demonstrates a feasible strategy to rationally design advanced SAA electrocatalysts via the basic principles of p-d orbital hybridization 
650 4 |a Journal Article 
650 4 |a atomic doping 
650 4 |a carbon dioxide reduction 
650 4 |a electrocatalysis 
650 4 |a orbital hybridization 
700 1 |a Tian, Yadong  |e verfasserin  |4 aut 
700 1 |a Ma, Jizhen  |e verfasserin  |4 aut 
700 1 |a Guo, Weijian  |e verfasserin  |4 aut 
700 1 |a Cai, Wenwen  |e verfasserin  |4 aut 
700 1 |a Zhang, Jintao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 6 vom: 01. Feb., Seite e2309648  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:6  |g day:01  |g month:02  |g pages:e2309648 
856 4 0 |u http://dx.doi.org/10.1002/adma.202309648  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 6  |b 01  |c 02  |h e2309648