D27-like carotenoid isomerases : at the crossroads of strigolactone and abscisic acid biosynthesis

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 4 vom: 12. Feb., Seite 1148-1158
1. Verfasser: Tolnai, Zoltán (VerfasserIn)
Weitere Verfasser: Sharma, Himani, Soós, Vilmos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Review Journal Article Research Support, Non-U.S. Gov't cis/trans isomerization ABA D27 biosynthesis carotenoids strigolactone Abscisic Acid mehr... 72S9A8J5GW beta Carotene 01YAE03M7J GR24 strigolactone violaxanthin 51C926029A Plant Proteins Carotenoids 36-88-4 Isomerases EC 5.- Heterocyclic Compounds, 3-Ring Lactones Xanthophylls
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Strigolactones and abscisic acid (ABA) are apocarotenoid-derived plant hormones. Their biosynthesis starts with the conversion of trans-carotenes into cis forms, which serve as direct precursors. Iron-containing DWARF27 isomerases were shown to catalyse or contribute to the trans/cis conversions of these precursor molecules. D27 converts trans-β-carotene into 9-cis-β-carotene, which is the first committed step in strigolactone biosynthesis. Recent studies found that its paralogue, D27-LIKE1, also catalyses this conversion. A crucial step in ABA biosynthesis is the oxidative cleavage of 9-cis-violaxanthin and/or 9-cis-neoxanthin, which are formed from their trans isomers by unknown isomerases. Several lines of evidence point out that D27-like proteins directly or indirectly contribute to 9-cis-violaxanthin conversion, and eventually ABA biosynthesis. Apparently, the diversity of D27-like enzymatic activity is essential for the optimization of cis/trans ratios, and hence act to maintain apocarotenoid precursor pools. In this review, we discuss the functional divergence and redundancy of D27 paralogues and their potential direct contribution to ABA precursor biosynthesis. We provide updates on their gene expression regulation and alleged Fe-S cluster binding feature. Finally, we conclude that the functional divergence of these paralogues is not fully understood and we provide an outlook on potential directions in research
Beschreibung:Date Completed 14.02.2024
Date Revised 30.09.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad475