Precise Tailoring of Lithium-Ion Transport for Ultralong-Cycling Dendrite-Free All-Solid-State Lithium Metal Batteries

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 12. März, Seite e2302647
1. Verfasser: Li, Weihan (VerfasserIn)
Weitere Verfasser: Quirk, James A, Li, Minsi, Xia, Wei, Morgan, Lucy M, Yin, Wen, Zheng, Matthew, Gallington, Leighanne C, Ren, Yang, Zhu, Ning, King, Graham, Feng, Renfei, Li, Ruying, Dawson, James A, Sham, Tsun-Kong, Sun, Xueliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article all‐solid‐state lithium metal batteries dendrite suppression intergranular intragranular lithium‐ion transport
Beschreibung
Zusammenfassung:© 2023 Wiley‐VCH GmbH.
All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, Li3InCl6, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport. Lithium-ion migration tailoring mechanism in crystals is developed by unexpected enhanced Li, In, and Cl vacancy populations and lower energy barrier for hopping. The lithium-ion transport tailoring mechanism between the grains is determined by the elimination of voids between grains and the formation of unexpected supersonic conducting grain boundaries, boosting the lithium dendrite suppression ability of SSE. Due to boosted lithium-ion conduction and dendrite-suppression ability, the all-solid-state lithium metal batteries coupled with Ni-rich LiNi0.83Co0.12Mn0.05O2 cathodes and lithium metal anodes demonstrate breakthroughs in electrochemical performance by achieving extremely long cycling life at a high current density of 0.5 C (2000 cycles, 93.7% capacity retention). This concept of precise tailoring of lithium-ion transport provides a cost, time, and energy efficient solution to conquer the remaining challenges in all-solid-state lithium-metal batteries for fast developing electric vehicle markets
Beschreibung:Date Revised 28.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202302647