Spherical Centralized Quantization for Fast Image Retrieval

Existing supervised quantization methods usually learn the quantizers from pair-wise, triplet, or anchor-based losses, which only capture their relationship locally without aligning them globally. This may cause an inadequate use of the entire space and a severe intersection among different semantic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 22., Seite 6485-6499
1. Verfasser: Song, Jingkuan (VerfasserIn)
Weitere Verfasser: Zhang, Zhibin, Zhu, Xiaosu, Zhao, Qike, Wang, Meng, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM364831839
003 DE-627
005 20231226100310.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3265262  |2 doi 
028 5 2 |a pubmed24n1216.xml 
035 |a (DE-627)NLM364831839 
035 |a (NLM)37991910 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Jingkuan  |e verfasserin  |4 aut 
245 1 0 |a Spherical Centralized Quantization for Fast Image Retrieval 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing supervised quantization methods usually learn the quantizers from pair-wise, triplet, or anchor-based losses, which only capture their relationship locally without aligning them globally. This may cause an inadequate use of the entire space and a severe intersection among different semantics, leading to inferior retrieval performance. Furthermore, to enable quantizers to learn in an end-to-end way, current practices usually relax the non-differentiable quantization operation by substituting it with softmax, which unfortunately is biased, leading to an unsatisfying suboptimal solution. To address the above issues, we present Spherical Centralized Quantization (SCQ), which contains a Priori Knowledge based Feature (PKFA) module for the global alignment of feature vectors, and an Annealing Regulation Semantic Quantization (ARSQ) module for low-biased optimization. Specifically, the PKFA module first applies Semantic Center Allocation (SCA) to obtain semantic centers based on prior knowledge, and then adopts Centralized Feature Alignment (CFA) to gather feature vectors based on corresponding semantic centers. The SCA and CFA globally optimize the inter-class separability and intra-class compactness, respectively. After that, the ARSQ module performs a partial-soft relaxation to tackle biases, and an Annealing Regulation Quantization loss for further addressing the local optimal solution. Experimental results show that our SCQ outperforms state-of-the-art algorithms by a large margin (2.1%, 3.6%, 5.5% mAP respectively) on CIFAR-10, NUS-WIDE, and ImageNet with a code length of 8 bits. Codes are publicly available:https://github.com/zzb111/Spherical-Centralized-Quantization 
650 4 |a Journal Article 
700 1 |a Zhang, Zhibin  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiaosu  |e verfasserin  |4 aut 
700 1 |a Zhao, Qike  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 22., Seite 6485-6499  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:22  |g pages:6485-6499 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3265262  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 22  |h 6485-6499