Polyethylenimine as a Versatile Simultaneous Reducing and Stabilizing Agent Enabling One-Pot Synthesis of Transition-Metal Nanoparticles : Fundamental Aspects and Practical Implications

The large surface area of metallic nanoparticles provides them with particular optical, chemical, and biological properties, accordingly enabling their use in a wide array of applications. In this regard, facile and fast synthetic approaches are desirable for ready-to-use functional materials. Follo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 48 vom: 05. Dez., Seite 17353-17365
1. Verfasser: Ribeiro, Caroline A S (VerfasserIn)
Weitere Verfasser: Panico, Karine, Handajevsky, Tamara J, da Silva, Fernanda Dias, Bellettini, Ismael C, Pavlova, Ewa, Giacomelli, Fernando C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The large surface area of metallic nanoparticles provides them with particular optical, chemical, and biological properties, accordingly enabling their use in a wide array of applications. In this regard, facile and fast synthetic approaches are desirable for ready-to-use functional materials. Following early investigations focused on the direct synthesis of polymer-coated gold nanoparticles, we herein demonstrate that such a strategy can be used to manufacture different types of d-block transition-metal nanoparticles via a one-pot method in aqueous media and mild temperature conditions. Gold (Au3+), palladium (Pd2+), and silver (Ag+) ions could be reduced using only polyethylenimine (PEI) or PEI derivatives acting simultaneously as a reducing and stabilizing agent and without the aid of any other external agent. The process gave rise, for instance, to Pd urchin-like nanostructures with a large surface area which confers to them outstanding catalytic performance compared to AuNPs and AgNPs produced using the same strategy. The polymer-stabilized AgNPs were demonstrated to be biocide against a variety of microorganisms, although AuNPs and PdNPs do not hold such an attribute at least in the probed concentration range. These findings may provide significant advances toward the practical, facile, and ready-to-use manufacturing of transition-metal nanoparticles for a myriad of applications
Beschreibung:Date Revised 05.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02538