Deep M2CDL : Deep Multi-Scale Multi-Modal Convolutional Dictionary Learning Network

For multi-modal image processing, network interpretability is essential due to the complicated dependency across modalities. Recently, a promising research direction for interpretable network is to incorporate dictionary learning into deep learning through unfolding strategy. However, the existing m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 20. Mai, Seite 2770-2787
1. Verfasser: Deng, Xin (VerfasserIn)
Weitere Verfasser: Xu, Jingyi, Gao, Fangyuan, Sun, Xiancheng, Xu, Mai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM364746785
003 DE-627
005 20250305112653.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3334624  |2 doi 
028 5 2 |a pubmed25n1215.xml 
035 |a (DE-627)NLM364746785 
035 |a (NLM)37983156 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Xin  |e verfasserin  |4 aut 
245 1 0 |a Deep M2CDL  |b Deep Multi-Scale Multi-Modal Convolutional Dictionary Learning Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For multi-modal image processing, network interpretability is essential due to the complicated dependency across modalities. Recently, a promising research direction for interpretable network is to incorporate dictionary learning into deep learning through unfolding strategy. However, the existing multi-modal dictionary learning models are both single-layer and single-scale, which restricts the representation ability. In this paper, we first introduce a multi-scale multi-modal convolutional dictionary learning ( M2CDL) model, which is performed in a multi-layer strategy, to associate different image modalities in a coarse-to-fine manner. Then, we propose a unified framework namely Deep M2CDL derived from the M2CDL model for both multi-modal image restoration (MIR) and multi-modal image fusion (MIF) tasks. The network architecture of Deep M2CDL fully matches the optimization steps of the M2CDL model, which makes each network module with good interpretability. Different from handcrafted priors, both the dictionary and sparse feature priors are learned through the network. The performance of the proposed Deep M2CDL is evaluated on a wide variety of MIR and MIF tasks, which shows the superiority of it over many state-of-the-art methods both quantitatively and qualitatively. In addition, we also visualize the multi-modal sparse features and dictionary filters learned from the network, which demonstrates the good interpretability of the Deep M2CDL network 
650 4 |a Journal Article 
700 1 |a Xu, Jingyi  |e verfasserin  |4 aut 
700 1 |a Gao, Fangyuan  |e verfasserin  |4 aut 
700 1 |a Sun, Xiancheng  |e verfasserin  |4 aut 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 20. Mai, Seite 2770-2787  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:20  |g month:05  |g pages:2770-2787 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3334624  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 20  |c 05  |h 2770-2787