Mechanism of selenite tolerance during barley germination : A combination of tissue selenium metabolism alterations and ascorbate-glutathione cycle modulation

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 205(2023) vom: 01. Dez., Seite 108189
1. Verfasser: Cheng, Chao (VerfasserIn)
Weitere Verfasser: Zhao, Xiujie, Yang, Huirong, Coldea, Teodora Emilia, Zhao, Haifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article AsA-GSH cycle Barley Reactive oxygen species Se metabolization Selenium (Se) Antioxidants Selenium H6241UJ22B Selenious Acid mehr... F6A27P4Q4R Glutathione GAN16C9B8O
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Selenite is widely used to increase Selenium (Se) content in cereals, however excessive selenite may be toxic to plant growth. In this study, barley was malted to elucidate the action mechanism of selenite in the generation and detoxification of oxidative toxicity. The results showed that high doses (600 μM) of selenite radically increased oxidative stress by the elevated accumulation of superoxide and malondialdehyde, leading to phenotypic symptoms of selenite-induced toxicity like stunted growth. Barley tolerates selenite through a combination of mechanisms, including altering Se distribution in barley, accelerating Se efflux, and increasing the activity of some essential antioxidant enzymes. Low doses (150 μM) of selenite improved barley biomass, respiratory rate, root vigor, and maintained the steady-state equilibrium between reactive oxygen species (ROS) and antioxidant enzyme. Selenite-induced proline may act as a biosignal to mediate the response of barley to Se stress. Furthermore, low doses of selenite increased the glutathione (GSH) and ascorbate (AsA) concentrations by mediating the ascorbate-glutathione cycle (AsA-GSH cycle). GSH intervention and dimethyl selenide volatilization appear to be the primary mechanisms of selenite tolerance in barley. Thus, results from this study will provide a better understanding of the mechanisms of selenite tolerance in crops
Beschreibung:Date Completed 05.12.2023
Date Revised 05.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.108189