Identifying Anomalies while Preserving Privacy

Identifying anomalies in data is vital in many domains, including medicine, finance, and national security. However, privacy concerns pose a significant roadblock to carrying out such an analysis. Since existing privacy definitions do not allow good accuracy when doing outlier analysis, the notion o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering. - 1998. - 35(2023), 12 vom: 01. Dez., Seite 12264-12281
1. Verfasser: Asif, Hafiz (VerfasserIn)
Weitere Verfasser: Vaidya, Jaideep, Papakonstantinou, Periklis A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on knowledge and data engineering
Schlagworte:Journal Article anomaly identification differential privacy outlier analysis outlier detection sensitive privacy
LEADER 01000caa a22002652 4500
001 NLM364665106
003 DE-627
005 20241204232405.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/tkde.2021.3129633  |2 doi 
028 5 2 |a pubmed24n1620.xml 
035 |a (DE-627)NLM364665106 
035 |a (NLM)37974954 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Asif, Hafiz  |e verfasserin  |4 aut 
245 1 0 |a Identifying Anomalies while Preserving Privacy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Identifying anomalies in data is vital in many domains, including medicine, finance, and national security. However, privacy concerns pose a significant roadblock to carrying out such an analysis. Since existing privacy definitions do not allow good accuracy when doing outlier analysis, the notion of sensitive privacy has been recently proposed to deal with this problem. Sensitive privacy makes it possible to analyze data for anomalies with practically meaningful accuracy while providing a strong guarantee similar to differential privacy, which is the prevalent privacy standard today. In this work, we relate sensitive privacy to other important notions of data privacy so that one can port the technical developments and private mechanism constructions from these related concepts to sensitive privacy. Sensitive privacy critically depends on the underlying anomaly model. We develop a novel n-step lookahead mechanism to efficiently answer arbitrary outlier queries, which provably guarantees sensitive privacy if we restrict our attention to common a class of anomaly models. We also provide general constructions to give sensitively private mechanisms for identifying anomalies and show the conditions under which the constructions would be optimal 
650 4 |a Journal Article 
650 4 |a anomaly identification 
650 4 |a differential privacy 
650 4 |a outlier analysis 
650 4 |a outlier detection 
650 4 |a sensitive privacy 
700 1 |a Vaidya, Jaideep  |e verfasserin  |4 aut 
700 1 |a Papakonstantinou, Periklis A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on knowledge and data engineering  |d 1998  |g 35(2023), 12 vom: 01. Dez., Seite 12264-12281  |w (DE-627)NLM09822915X  |x 1041-4347  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:12264-12281 
856 4 0 |u http://dx.doi.org/10.1109/tkde.2021.3129633  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 12  |b 01  |c 12  |h 12264-12281