|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM364660511 |
003 |
DE-627 |
005 |
20240425232508.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.19400
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1386.xml
|
035 |
|
|
|a (DE-627)NLM364660511
|
035 |
|
|
|a (NLM)37974494
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Plett, Krista L
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fungal metabolism and free amino acid content may predict nitrogen transfer to the host plant in the ectomycorrhizal relationship between Pisolithus spp. and Eucalyptus grandis
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.04.2024
|
500 |
|
|
|a Date Revised 25.04.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
|
520 |
|
|
|a Ectomycorrhizal (ECM) fungi are crucial for tree nitrogen (N) nutrition; however, mechanisms governing N transfer from fungal tissues to the host plant are not well understood. ECM fungal isolates, even from the same species, vary considerably in their ability to support tree N nutrition, resulting in a range of often unpredictable symbiotic outcomes. In this study, we used isotopic labelling to quantify the transfer of N to the plant host by isolates from the ECM genus Pisolithus, known to have significant variability in colonisation and transfer of nutrients to a host. We considered the metabolic fate of N acquired by the fungi and found that the percentage of plant N acquired through symbiosis significantly correlated to the concentration of free amino acids in ECM extra-radical mycelium. Transcriptomic analyses complemented these findings with isolates having high amino acid content and N transfer showing increased expression of genes related to amino acid transport and catabolic pathways. These results suggest that fungal N metabolism impacts N transfer to the host plant in this interaction and that relative N transfer may be possible to predict through basic biochemical analyses
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Eucalyptus grandis
|
650 |
|
4 |
|a Pisolithus
|
650 |
|
4 |
|a amino acid metabolism
|
650 |
|
4 |
|a ectomycorrhizal fungi
|
650 |
|
4 |
|a nutrient transfer
|
650 |
|
4 |
|a transcriptomics
|
650 |
|
7 |
|a Amino Acids
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Wojtalewicz, Dominika
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Anderson, Ian C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Plett, Jonathan M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 242(2024), 4 vom: 01. Apr., Seite 1589-1602
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:242
|g year:2024
|g number:4
|g day:01
|g month:04
|g pages:1589-1602
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.19400
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 242
|j 2024
|e 4
|b 01
|c 04
|h 1589-1602
|