Effects of biochar combined with MgO desulfurization waste residue on nitrogen conversion and odor emission in chicken manure composting
Aim: Chicken manure is known to produce strong odors during aerobic composting, which not only pollutes the surrounding environment but also leads to the loss of valuable nutrients like nitrogen and sulfur, thus reducing the quality of the fertilizer. Methods: In this study, we explored the use of b...
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 23 vom: 30. Sept., Seite 4779-4790 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Chicken manure compost MgO desulfurization waste residue biochar deodorization nitrogen conversion Charcoal 16291-96-6 Manure Nitrogen mehr... |
Zusammenfassung: | Aim: Chicken manure is known to produce strong odors during aerobic composting, which not only pollutes the surrounding environment but also leads to the loss of valuable nutrients like nitrogen and sulfur, thus reducing the quality of the fertilizer. Methods: In this study, we explored the use of biochar combined with MgO desulfurization waste residue (MDWR) as a novel composting additive. Our approach involved conducting composting tests, characterizing the compost samples, conducting pot experiments, and examining the impact of the additives on nitrogen retention, deodorization, and compost quality. Results: Our findings revealed that the addition of biochar and MDWR significantly reduced ammonia volatilization in chicken manure compost, demonstrating a reduction rate of up to 60.12%. Additionally, the emission of volatile organic compounds (VOCs) from chicken manure compost treated with biochar and MDWR decreased by 44.63% compared to the control group. Conclusions: The composting product treated with both biochar and MDWR (CMB) exhibited a 67.7% increase in total nitrogen (TN) compared to the blank control group, surpassing the other treatment groups and showcasing the synergistic effect of these two additives on nitrogen retention. Moreover, the CMB treatment facilitated the formation of struvite crystals. Furthermore, our pot experiment results demonstrated that the CMB treatment enhanced vegetable yield and quality while reducing nitrate content. These findings highlight the significant impact of MDWR on nitrogen retention, deodorization, and compost quality enhancement, thereby indicating its promising application prospects |
---|---|
Beschreibung: | Date Completed 05.09.2024 Date Revised 05.09.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2023.2283086 |