A general class of small area estimation using calibrated hierarchical likelihood approach with applications to COVID-19 data

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 16 vom: 06., Seite 3384-3404
1. Verfasser: Rathnayake, Nirosha (VerfasserIn)
Weitere Verfasser: Dai, Hongying Daisy, Charnigo, Richard, Schmid, Kendra, Meza, Jane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article COVID-19 Small area estimation bias correction hierarchical
LEADER 01000naa a22002652 4500
001 NLM364614722
003 DE-627
005 20231226095811.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2112556  |2 doi 
028 5 2 |a pubmed24n1215.xml 
035 |a (DE-627)NLM364614722 
035 |a (NLM)37969889 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rathnayake, Nirosha  |e verfasserin  |4 aut 
245 1 2 |a A general class of small area estimation using calibrated hierarchical likelihood approach with applications to COVID-19 data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The direct estimation techniques in small area estimation (SAE) models require sufficiently large sample sizes to provide accurate estimates. Hence, indirect model-based methodologies are developed to incorporate auxiliary information. The most commonly used SAE models, including the Fay-Herriot (FH) model and its extended models, are estimated using marginal likelihood estimation and the Bayesian methods, which rely heavily on the computationally intensive integration of likelihood function. In this article, we propose a Calibrated Hierarchical (CH) likelihood approach to obtain SAE through hierarchical estimation of fixed effects and random effects with the regression calibration method for bias correction. The latent random variables at the domain level are treated as 'parameters' and estimated jointly with other parameters of interest. Then the dispersion parameters are estimated iteratively based on the Laplace approximation of the profile likelihood. The proposed method avoids the intractable integration to estimate the marginal distribution. Hence, it can be applied to a wide class of distributions, including generalized linear mixed models, survival analysis, and joint modeling with distinct distributions. We demonstrate our method using an area-level analysis of publicly available count data from the novel coronavirus (COVID-19) positive cases 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Small area estimation 
650 4 |a bias correction 
650 4 |a hierarchical 
700 1 |a Dai, Hongying Daisy  |e verfasserin  |4 aut 
700 1 |a Charnigo, Richard  |e verfasserin  |4 aut 
700 1 |a Schmid, Kendra  |e verfasserin  |4 aut 
700 1 |a Meza, Jane  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 16 vom: 06., Seite 3384-3404  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:16  |g day:06  |g pages:3384-3404 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2112556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 16  |b 06  |h 3384-3404