Photo-Modulated Ionic Polymer as an Adaptable Electron Transport Material for Optically Switchable Pixel-Free Displays
© 2023 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 1 vom: 14. Jan., Seite e2309593 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article adaptive photosensitive ionic polymer electron transport pixel-free light-emitting display |
| Zusammenfassung: | © 2023 Wiley-VCH GmbH. In addition to electrically driven organic light-emitting diode (OLED) displays that rely on complicated and costly circuits for switching individual pixel illumination, developing a facile approach that structures pixel-free light-emitting displays with exceptional precision and spatial resolution via external photo-modulation holds significant importance for advancing consumer electronics. Here, optically switchable organic light-emitting pixel-free displays (OSPFDs) are presented and fabricated by judiciously combining an adaptive photosensitive ionic polymer as electron transport materials (ETM) with external photo-modulation as the switching mode while ensuring superior illumination performance and seamless imaging capability. By irradiating the solution-processed OSPFDs with light at specific wavelengths, efficient and reversible tuning of both electron transport and electroluminescence is achieved simultaneously. This remarkable control is achieved by altering the energetic matching within OSPFDs, which also exhibits a high level of universality and adjustable flexibility in the three primary color-based light-emitting displays. Moreover, the ease of creating and erasing desired pixel-free emitting patterns through a non-invasive photopatterning process within a single OSPFD is demonstrated, thereby rendering this approach promising for commercial displaying devices and highly precise pixelated illuminants |
|---|---|
| Beschreibung: | Date Revised 04.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202309593 |