Automatic Gaze Analysis : A Survey of Deep Learning Based Approaches

Eye gaze analysis is an important research problem in the field of Computer Vision and Human-Computer Interaction. Even with notable progress in the last 10 years, automatic gaze analysis still remains challenging due to the uniqueness of eye appearance, eye-head interplay, occlusion, image quality,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2023), 1 vom: 15. Jan., Seite 61-84
1. Verfasser: Ghosh, Shreya (VerfasserIn)
Weitere Verfasser: Dhall, Abhinav, Hayat, Munawar, Knibbe, Jarrod, Ji, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Review Journal Article
LEADER 01000naa a22002652 4500
001 NLM364585226
003 DE-627
005 20231226095736.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3321337  |2 doi 
028 5 2 |a pubmed24n1215.xml 
035 |a (DE-627)NLM364585226 
035 |a (NLM)37966935 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghosh, Shreya  |e verfasserin  |4 aut 
245 1 0 |a Automatic Gaze Analysis  |b A Survey of Deep Learning Based Approaches 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.12.2023 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Eye gaze analysis is an important research problem in the field of Computer Vision and Human-Computer Interaction. Even with notable progress in the last 10 years, automatic gaze analysis still remains challenging due to the uniqueness of eye appearance, eye-head interplay, occlusion, image quality, and illumination conditions. There are several open questions, including what are the important cues to interpret gaze direction in an unconstrained environment without prior knowledge and how to encode them in real-time. We review the progress across a range of gaze analysis tasks and applications to elucidate these fundamental questions, identify effective methods in gaze analysis, and provide possible future directions. We analyze recent gaze estimation and segmentation methods, especially in the unsupervised and weakly supervised domain, based on their advantages and reported evaluation metrics. Our analysis shows that the development of a robust and generic gaze analysis method still needs to address real-world challenges such as unconstrained setup and learning with less supervision. We conclude by discussing future research directions for designing a real-world gaze analysis system that can propagate to other domains including Computer Vision, Augmented Reality (AR), Virtual Reality (VR), and Human Computer Interaction (HCI) 
650 4 |a Review 
650 4 |a Journal Article 
700 1 |a Dhall, Abhinav  |e verfasserin  |4 aut 
700 1 |a Hayat, Munawar  |e verfasserin  |4 aut 
700 1 |a Knibbe, Jarrod  |e verfasserin  |4 aut 
700 1 |a Ji, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2023), 1 vom: 15. Jan., Seite 61-84  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2023  |g number:1  |g day:15  |g month:01  |g pages:61-84 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3321337  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2023  |e 1  |b 15  |c 01  |h 61-84