A Q-learning method based on coarse-to-fine potential energy surface for locating transition state and reaction pathway

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 8 vom: 30. Feb., Seite 487-497
1. Verfasser: Xu, Wenjun (VerfasserIn)
Weitere Verfasser: Zhao, Yanling, Chen, Jialu, Wan, Zhongyu, Yan, Dadong, Zhang, Xinghua, Zhang, Ruiqin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Q-learning method coarse-to-fine scanning scheme potential energy surface reaction pathway transition state search
LEADER 01000caa a22002652 4500
001 NLM364583010
003 DE-627
005 20240201232014.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27259  |2 doi 
028 5 2 |a pubmed24n1277.xml 
035 |a (DE-627)NLM364583010 
035 |a (NLM)37966714 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Wenjun  |e verfasserin  |4 aut 
245 1 2 |a A Q-learning method based on coarse-to-fine potential energy surface for locating transition state and reaction pathway 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Transition state (TS) on the potential energy surface (PES) plays a key role in determining the kinetics and thermodynamics of chemical reactions. Inspired by the fact that the dynamics of complex systems are always driven by rare but significant transition events, we herein propose a TS search method in accordance with the Q-learning algorithm. Appropriate reward functions are set for a given PES to optimize the reaction pathway through continuous trial and error, and then the TS can be obtained from the optimized reaction pathway. The validity of this Q-learning method with reasonable settings of Q-value table including actions, states, learning rate, greedy rate, discount rate, and so on, is exemplified in 2 two-dimensional potential functions. In the applications of the Q-learning method to two chemical reactions, it is demonstrated that the Q-learning method can predict consistent TS and reaction pathway with those by ab initio calculations. Notably, the PES must be well prepared before using the Q-learning method, and a coarse-to-fine PES scanning scheme is thus introduced to save the computational time while maintaining the accuracy of the Q-learning prediction. This work offers a simple and reliable Q-learning method to search for all possible TS and reaction pathway of a chemical reaction, which may be a new option for effectively exploring the PES in an extensive search manner 
650 4 |a Journal Article 
650 4 |a Q-learning method 
650 4 |a coarse-to-fine scanning scheme 
650 4 |a potential energy surface 
650 4 |a reaction pathway 
650 4 |a transition state search 
700 1 |a Zhao, Yanling  |e verfasserin  |4 aut 
700 1 |a Chen, Jialu  |e verfasserin  |4 aut 
700 1 |a Wan, Zhongyu  |e verfasserin  |4 aut 
700 1 |a Yan, Dadong  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinghua  |e verfasserin  |4 aut 
700 1 |a Zhang, Ruiqin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 8 vom: 30. Feb., Seite 487-497  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:8  |g day:30  |g month:02  |g pages:487-497 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 8  |b 30  |c 02  |h 487-497