Bimetallic-MOF Derived Carbon with Single Pt Anchored C4 Atomic Group Constructing Super Fuel Cell with Ultrahigh Power Density And Self-Change Ability
© 2023 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 1 vom: 01. Jan., Seite e2308989 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article Pt single atoms catalyst hollow porous structure parallel discharge self-charging ultra-high specific power |
Résumé: | © 2023 Wiley-VCH GmbH. Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading |
---|---|
Description: | Date Revised 04.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202308989 |