LayerNet : High-Resolution Semantic 3D Reconstruction of Clothed People

In this article, we introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry; and LayerNet, a deep network that given a single image of a person simultaneously performs detailed 3D reconstruction of body and clothes. In contrast to existing learning-ba...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 2 vom: 14. Jan., Seite 1257-1272
1. Verfasser: Corona, Enric (VerfasserIn)
Weitere Verfasser: Alenya, Guillem, Pons-Moll, Gerard, Moreno-Noguer, Francesc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364546190
003 DE-627
005 20240114233019.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3332677  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM364546190 
035 |a (NLM)37962994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Corona, Enric  |e verfasserin  |4 aut 
245 1 0 |a LayerNet  |b High-Resolution Semantic 3D Reconstruction of Clothed People 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry; and LayerNet, a deep network that given a single image of a person simultaneously performs detailed 3D reconstruction of body and clothes. In contrast to existing learning-based approaches that require training specific models for each type of garment, SMPLicit can represent in a unified manner different garment topologies (e.g. from sleeveless tops to hoodies and open jackets), while controlling other properties like garment size or tightness/looseness. LayerNet follows a coarse-to-fine multi-stage strategy by first predicting smooth cloth geometries from SMPLicit, which are then refined by an image-guided displacement network that gracefully fits the body recovering high-frequency details and wrinkles. LayerNet achieves competitive accuracy in the task of 3D reconstruction against current 'garment-agnostic' state of the art for images of people in up-right positions and controlled environments, and consistently surpasses these methods on challenging body poses and uncontrolled settings. Furthermore, the semantically rich outcome of our approach is suitable for performing Virtual Try-on tasks directly on 3D, a task which, so far, has only been addressed in the 2D domain 
650 4 |a Journal Article 
700 1 |a Alenya, Guillem  |e verfasserin  |4 aut 
700 1 |a Pons-Moll, Gerard  |e verfasserin  |4 aut 
700 1 |a Moreno-Noguer, Francesc  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 2 vom: 14. Jan., Seite 1257-1272  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:2  |g day:14  |g month:01  |g pages:1257-1272 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3332677  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 2  |b 14  |c 01  |h 1257-1272