Uncovering root compaction response mechanisms : new insights and opportunities

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 2 vom: 10. Jan., Seite 578-583
1. Verfasser: Pandey, Bipin K (VerfasserIn)
Weitere Verfasser: Bennett, Malcolm J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't ABA auxin ethylene root responses soil compaction Soil 91GW059KN7 Ethylenes mehr... Water 059QF0KO0R Gases
LEADER 01000caa a22002652 4500
001 NLM364424028
003 DE-627
005 20240726232057.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erad389  |2 doi 
028 5 2 |a pubmed24n1482.xml 
035 |a (DE-627)NLM364424028 
035 |a (NLM)37950742 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pandey, Bipin K  |e verfasserin  |4 aut 
245 1 0 |a Uncovering root compaction response mechanisms  |b new insights and opportunities 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.01.2024 
500 |a Date Revised 26.07.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Compaction disrupts soil structure, reducing root growth, nutrient and water uptake, gas exchange, and microbial growth. Root growth inhibition by soil compaction was originally thought to reflect the impact of mechanical impedance and reduced water availability. However, using a novel gas diffusion-based mechanism employing the hormone ethylene, recent research has revealed that plant roots sense soil compaction. Non-compacted soil features highly interconnected pore spaces that facilitate diffusion of gases such as ethylene which are released by root tips. In contrast, soil compaction stress disrupts the pore network, causing ethylene to accumulate around root tips and trigger growth arrest. Genetically disrupting ethylene signalling causes roots to become much less sensitive to compaction stress. Such new understanding about the molecular sensing mechanism and emerging root anatomical traits provides novel opportunities to develop crops resistant to soil compaction by targeting key genes and their signalling pathways. This expert view discusses these recent advances and the molecular mechanisms associated with root-soil compaction responses 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a ABA 
650 4 |a auxin 
650 4 |a ethylene 
650 4 |a root responses 
650 4 |a soil compaction 
650 7 |a Soil  |2 NLM 
650 7 |a ethylene  |2 NLM 
650 7 |a 91GW059KN7  |2 NLM 
650 7 |a Ethylenes  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Gases  |2 NLM 
700 1 |a Bennett, Malcolm J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 75(2024), 2 vom: 10. Jan., Seite 578-583  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:75  |g year:2024  |g number:2  |g day:10  |g month:01  |g pages:578-583 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erad389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 75  |j 2024  |e 2  |b 10  |c 01  |h 578-583