PointSee : Image Enhances Point Cloud

There is a prevailing trend towards fusing multi-modal information for 3D object detection (3OD). However, challenges related to computational efficiency, plug-and-play capabilities, and accurate feature alignment have not been adequately addressed in the design of multi-modal fusion networks. In th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 9 vom: 07. Aug., Seite 6291-6308
1. Verfasser: Gu, Lipeng (VerfasserIn)
Weitere Verfasser: Yan, Xuefeng, Cui, Peng, Gong, Lina, Xie, Haoran, Wang, Fu Lee, Qin, Jing, Wei, Mingqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364398124
003 DE-627
005 20240801232617.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3331779  |2 doi 
028 5 2 |a pubmed24n1488.xml 
035 |a (DE-627)NLM364398124 
035 |a (NLM)37948146 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gu, Lipeng  |e verfasserin  |4 aut 
245 1 0 |a PointSee  |b Image Enhances Point Cloud 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There is a prevailing trend towards fusing multi-modal information for 3D object detection (3OD). However, challenges related to computational efficiency, plug-and-play capabilities, and accurate feature alignment have not been adequately addressed in the design of multi-modal fusion networks. In this paper, we present PointSee, a lightweight, flexible, and effective multi-modal fusion solution to facilitate various 3OD networks by semantic feature enhancement of point clouds (e.g., LiDAR or RGB-D data) assembled with scene images. Beyond the existing wisdom of 3OD, PointSee consists of a hidden module (HM) and a seen module (SM): HM decorates point clouds using 2D image information in an offline fusion manner, leading to minimal or even no adaptations of existing 3OD networks; SM further enriches the point clouds by acquiring point-wise representative semantic features, leading to enhanced performance of existing 3OD networks. Besides the new architecture of PointSee, we propose a simple yet efficient training strategy, to ease the potential inaccurate regressions of 2D object detection networks. Extensive experiments on the popular outdoor/indoor benchmarks show quantitative and qualitative improvements of our PointSee over thirty-five state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Yan, Xuefeng  |e verfasserin  |4 aut 
700 1 |a Cui, Peng  |e verfasserin  |4 aut 
700 1 |a Gong, Lina  |e verfasserin  |4 aut 
700 1 |a Xie, Haoran  |e verfasserin  |4 aut 
700 1 |a Wang, Fu Lee  |e verfasserin  |4 aut 
700 1 |a Qin, Jing  |e verfasserin  |4 aut 
700 1 |a Wei, Mingqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 9 vom: 07. Aug., Seite 6291-6308  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:9  |g day:07  |g month:08  |g pages:6291-6308 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3331779  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 9  |b 07  |c 08  |h 6291-6308