|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM364398124 |
003 |
DE-627 |
005 |
20240801232617.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2023.3331779
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1488.xml
|
035 |
|
|
|a (DE-627)NLM364398124
|
035 |
|
|
|a (NLM)37948146
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gu, Lipeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a PointSee
|b Image Enhances Point Cloud
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a There is a prevailing trend towards fusing multi-modal information for 3D object detection (3OD). However, challenges related to computational efficiency, plug-and-play capabilities, and accurate feature alignment have not been adequately addressed in the design of multi-modal fusion networks. In this paper, we present PointSee, a lightweight, flexible, and effective multi-modal fusion solution to facilitate various 3OD networks by semantic feature enhancement of point clouds (e.g., LiDAR or RGB-D data) assembled with scene images. Beyond the existing wisdom of 3OD, PointSee consists of a hidden module (HM) and a seen module (SM): HM decorates point clouds using 2D image information in an offline fusion manner, leading to minimal or even no adaptations of existing 3OD networks; SM further enriches the point clouds by acquiring point-wise representative semantic features, leading to enhanced performance of existing 3OD networks. Besides the new architecture of PointSee, we propose a simple yet efficient training strategy, to ease the potential inaccurate regressions of 2D object detection networks. Extensive experiments on the popular outdoor/indoor benchmarks show quantitative and qualitative improvements of our PointSee over thirty-five state-of-the-art methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yan, Xuefeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cui, Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Lina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Haoran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Fu Lee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Mingqiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 30(2024), 9 vom: 07. Aug., Seite 6291-6308
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2024
|g number:9
|g day:07
|g month:08
|g pages:6291-6308
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2023.3331779
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2024
|e 9
|b 07
|c 08
|h 6291-6308
|