Messages are Never Propagated Alone : Collaborative Hypergraph Neural Network for Time-Series Forecasting

This paper delves into the problem of correlated time-series forecasting in practical applications, an area of growing interest in a multitude of fields such as stock price prediction and traffic demand analysis. Current methodologies primarily represent data using conventional graph structures, yet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 07. März, Seite 2333-2347
1. Verfasser: Yin, Nan (VerfasserIn)
Weitere Verfasser: Shen, Li, Xiong, Huan, Gu, Bin, Chen, Chong, Hua, Xian-Sheng, Liu, Siwei, Luo, Xiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364353759
003 DE-627
005 20240307232043.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3331389  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM364353759 
035 |a (NLM)37943653 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yin, Nan  |e verfasserin  |4 aut 
245 1 0 |a Messages are Never Propagated Alone  |b Collaborative Hypergraph Neural Network for Time-Series Forecasting 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper delves into the problem of correlated time-series forecasting in practical applications, an area of growing interest in a multitude of fields such as stock price prediction and traffic demand analysis. Current methodologies primarily represent data using conventional graph structures, yet these fail to capture intricate structures with non-pairwise relationships. To address this challenge, we adopt dynamic hypergraphs in this study to better illustrate complex interactions, and introduce a novel hypergraph neural network model named CHNN for correlated time series forecasting. In more detail, CHNN leverages both semantic and topological similarities via an interaction model and hypergraph diffusion process, thereby constructing comprehensive collaborative correlation scores that effectively guide spatial message propagation. In addition, it incorporates short-term temporal information to generate efficient spatio-temporal feature maps. Lastly, a long-term temporal module is proposed to generate future predictions utilizing both temporal attention and a gated recurrent network. Comprehensive experiments conducted on four real-world datasets, i.e., Tiingo, Stocktwits, NYC-Taxi, and Social Network demonstrate that the proposed CHNN markedly outperforms a range of benchmark methods 
650 4 |a Journal Article 
700 1 |a Shen, Li  |e verfasserin  |4 aut 
700 1 |a Xiong, Huan  |e verfasserin  |4 aut 
700 1 |a Gu, Bin  |e verfasserin  |4 aut 
700 1 |a Chen, Chong  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
700 1 |a Liu, Siwei  |e verfasserin  |4 aut 
700 1 |a Luo, Xiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 07. März, Seite 2333-2347  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:07  |g month:03  |g pages:2333-2347 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3331389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 07  |c 03  |h 2333-2347