|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM36431527X |
003 |
DE-627 |
005 |
20250305103227.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202309753
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1213.xml
|
035 |
|
|
|a (DE-627)NLM36431527X
|
035 |
|
|
|a (NLM)37939787
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lu, Hongyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Microfluidic-Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High-Stable Zinc-Organic Battery
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Zinc powder (Zn-P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti-corrosive Zn-P-based anode with a functional layer formed from a MXene and Cu-THBQ (MXene/Cu-THBQ) heterostructure is successfully fabricated via microfluidic-assisted 3D printing. The unusual anti-corrosive and strong adsorption of Zn ions using the MXene/Cu-THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn-P with the MXene/Cu-THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm-2 /1 mAh cm-2 . Furthermore, a Zn-organic full battery matched with a 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D conductive metal-organic frameworks
|
650 |
|
4 |
|a 2D heterostructures
|
650 |
|
4 |
|a MXenes
|
650 |
|
4 |
|a zinc powder anodes
|
650 |
|
4 |
|a zinc-organic batteries
|
700 |
1 |
|
|a Hu, Jisong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kaiqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Jingxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Shenzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yujie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Bingang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pang, Huan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 6 vom: 04. Feb., Seite e2309753
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:6
|g day:04
|g month:02
|g pages:e2309753
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202309753
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 6
|b 04
|c 02
|h e2309753
|