An Introduction to Adversarially Robust Deep Learning

The widespread success of deep learning in solving machine learning problems has fueled its adoption in many fields, from speech recognition to drug discovery and medical imaging. However, deep learning systems are extremely fragile: imperceptibly small modifications to their input data can cause th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 01. März, Seite 2071-2090
1. Verfasser: Peck, Jonathan (VerfasserIn)
Weitere Verfasser: Goossens, Bart, Saeys, Yvan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364306823
003 DE-627
005 20240307232042.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3331087  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM364306823 
035 |a (NLM)37938940 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peck, Jonathan  |e verfasserin  |4 aut 
245 1 3 |a An Introduction to Adversarially Robust Deep Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The widespread success of deep learning in solving machine learning problems has fueled its adoption in many fields, from speech recognition to drug discovery and medical imaging. However, deep learning systems are extremely fragile: imperceptibly small modifications to their input data can cause the models to produce erroneous output. It is very easy to generate such adversarial perturbations even for state-of-the-art models, yet immunization against them has proven exceptionally challenging. Despite over a decade of research on this problem, our solutions are still far from satisfactory and many open problems remain. In this work, we survey some of the most important contributions in the field of adversarial robustness. We pay particular attention to the reasons why past attempts at improving robustness have been insufficient, and we identify several promising areas for future research 
650 4 |a Journal Article 
700 1 |a Goossens, Bart  |e verfasserin  |4 aut 
700 1 |a Saeys, Yvan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 01. März, Seite 2071-2090  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:01  |g month:03  |g pages:2071-2090 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3331087  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 01  |c 03  |h 2071-2090