Revisiting Computer-Aided Tuberculosis Diagnosis

Tuberculosis (TB) is a major global health threat, causing millions of deaths annually. Although early diagnosis and treatment can greatly improve the chances of survival, it remains a major challenge, especially in developing countries. Recently, computer-aided tuberculosis diagnosis (CTD) using de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 07. März, Seite 2316-2332
1. Verfasser: Liu, Yun (VerfasserIn)
Weitere Verfasser: Wu, Yu-Huan, Zhang, Shi-Chen, Liu, Li, Wu, Min, Cheng, Ming-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364264349
003 DE-627
005 20240308232134.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3330825  |2 doi 
028 5 2 |a pubmed24n1320.xml 
035 |a (DE-627)NLM364264349 
035 |a (NLM)37934644 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yun  |e verfasserin  |4 aut 
245 1 0 |a Revisiting Computer-Aided Tuberculosis Diagnosis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2024 
500 |a Date Revised 08.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Tuberculosis (TB) is a major global health threat, causing millions of deaths annually. Although early diagnosis and treatment can greatly improve the chances of survival, it remains a major challenge, especially in developing countries. Recently, computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data. To address this, we establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11 K) dataset, which contains 11 200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas. This dataset enables the training of sophisticated detectors for high-quality CTD. Furthermore, we propose a strong baseline, SymFormer, for simultaneous CXR image classification and TB infection area detection. SymFormer incorporates Symmetric Search Attention (SymAttention) to tackle the bilateral symmetry property of CXR images for learning discriminative features. Since CXR images may not strictly adhere to the bilateral symmetry property, we also propose Symmetric Positional Encoding (SPE) to facilitate SymAttention through feature recalibration. To promote future research on CTD, we build a benchmark by introducing evaluation metrics, evaluating baseline models reformed from existing detectors, and running an online challenge. Experiments show that SymFormer achieves state-of-the-art performance on the TBX11 K dataset 
650 4 |a Journal Article 
700 1 |a Wu, Yu-Huan  |e verfasserin  |4 aut 
700 1 |a Zhang, Shi-Chen  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Wu, Min  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 07. März, Seite 2316-2332  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:07  |g month:03  |g pages:2316-2332 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3330825  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 07  |c 03  |h 2316-2332