Predicting the effects of mutations on protein solubility using graph convolution network and protein language model representation

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 8 vom: 30. März, Seite 436-445
1. Verfasser: Wang, Jing (VerfasserIn)
Weitere Verfasser: Chen, Sheng, Yuan, Qianmu, Chen, Jianwen, Li, Danping, Wang, Lei, Yang, Yuedong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article graph convolutional neural network protein language models protein mutation protein pretraining solubility changes Amino Acids
LEADER 01000caa a22002652c 4500
001 NLM364255803
003 DE-627
005 20250305102505.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27249  |2 doi 
028 5 2 |a pubmed25n1213.xml 
035 |a (DE-627)NLM364255803 
035 |a (NLM)37933773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jing  |e verfasserin  |4 aut 
245 1 0 |a Predicting the effects of mutations on protein solubility using graph convolution network and protein language model representation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.02.2024 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Solubility is one of the most important properties of protein. Protein solubility can be greatly changed by single amino acid mutations and the reduced protein solubility could lead to diseases. Since experimental methods to determine solubility are time-consuming and expensive, in-silico methods have been developed to predict the protein solubility changes caused by mutations mostly through protein evolution information. However, these methods are slow since it takes long time to obtain evolution information through multiple sequence alignment. In addition, these methods are of low performance because they do not fully utilize protein 3D structures due to a lack of experimental structures for most proteins. Here, we proposed a sequence-based method DeepMutSol to predict solubility change from residual mutations based on the Graph Convolutional Neural Network (GCN), where the protein graph was initiated according to predicted protein structure from Alphafold2, and the nodes (residues) were represented by protein language embeddings. To circumvent the small data of solubility changes, we further pretrained the model over absolute protein solubility. DeepMutSol was shown to outperform state-of-the-art methods in benchmark tests. In addition, we applied the method to clinically relevant genes from the ClinVar database and the predicted solubility changes were shown able to separate pathogenic mutations. All of the data sets and the source code are available at https://github.com/biomed-AI/DeepMutSol 
650 4 |a Journal Article 
650 4 |a graph convolutional neural network 
650 4 |a protein language models 
650 4 |a protein mutation 
650 4 |a protein pretraining 
650 4 |a solubility changes 
650 7 |a Amino Acids  |2 NLM 
700 1 |a Chen, Sheng  |e verfasserin  |4 aut 
700 1 |a Yuan, Qianmu  |e verfasserin  |4 aut 
700 1 |a Chen, Jianwen  |e verfasserin  |4 aut 
700 1 |a Li, Danping  |e verfasserin  |4 aut 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
700 1 |a Yang, Yuedong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 8 vom: 30. März, Seite 436-445  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:8  |g day:30  |g month:03  |g pages:436-445 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 8  |b 30  |c 03  |h 436-445