Particle-Polymer Union with Changeable Wettability for Constructing Bijels Using a Simple Mixing Method

Bicontinuous emulsion gels (bijels) are nonequilibrium dispersed systems with particle-stabilized continuous fluid domains, and the internal connectivity of channels brings the possibility of efficient mass transport, endowing bijels great potential in diverse applications. Different from the common...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 46 vom: 21. Nov., Seite 16513-16521
1. Verfasser: Zhang, Liya (VerfasserIn)
Weitere Verfasser: Tian, Yanmei, Song, Aixin, Hao, Jingcheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Bicontinuous emulsion gels (bijels) are nonequilibrium dispersed systems with particle-stabilized continuous fluid domains, and the internal connectivity of channels brings the possibility of efficient mass transport, endowing bijels great potential in diverse applications. Different from the common method to produce bijels, the spinodal decomposition, which needs precise temperature control and is restricted by the selection of liquid pairs, in this work, a direct mixing method was performed to construct bijels, simplifying the fabrication process. The hydrophilic rod-shaped cellulose nanocrystalline (CNC) particles were in situ combined with the hydrophobic polymer, aminopropyl-terminated polydimethylsiloxane (PDMS-NH2), to acquire a controllable interfacial wettability of CNC. The CNCmPDMS-NH2 complexes were adsorbed at the water-toluene interface and achieved a change of Pickering emulsion types, oil-in-water, bijel, and water-in-oil, through tuning the interfacial performance of CNC@mPDMS-NH2 complexes. A three-dimensional scanning image and curvature calculation were applied to verify the obtained bijel, further demonstrating the successful preparation of the bicontinuous structure. This work enriched the members of particles for stabilizing bijels and was considered to be scalable in manufacturing for applications on a large scale
Beschreibung:Date Revised 17.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02441