Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining

Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 4 vom: 04. März, Seite 2252-2266
1. Verfasser: Bi, Xia-An (VerfasserIn)
Weitere Verfasser: Huang, YangJun, Yang, Zicheng, Chen, Ke, Xing, Zhaoxu, Xu, Luyun, Li, Xiang, Liu, Zhengliang, Liu, Tianming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364227400
003 DE-627
005 20240307232039.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3330795  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM364227400 
035 |a (NLM)37930908 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bi, Xia-An  |e verfasserin  |4 aut 
245 1 0 |a Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks 
650 4 |a Journal Article 
700 1 |a Huang, YangJun  |e verfasserin  |4 aut 
700 1 |a Yang, Zicheng  |e verfasserin  |4 aut 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Xing, Zhaoxu  |e verfasserin  |4 aut 
700 1 |a Xu, Luyun  |e verfasserin  |4 aut 
700 1 |a Li, Xiang  |e verfasserin  |4 aut 
700 1 |a Liu, Zhengliang  |e verfasserin  |4 aut 
700 1 |a Liu, Tianming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 4 vom: 04. März, Seite 2252-2266  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:4  |g day:04  |g month:03  |g pages:2252-2266 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3330795  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 4  |b 04  |c 03  |h 2252-2266