Image Captioning With Controllable and Adaptive Length Levels

Image captioning is a core challenge in computer vision, attracting significant attention. Traditional methods prioritize caption quality, often overlooking style control. Our research enhances method controllability, enabling descriptions of varying detail. By integrating a length level embedding i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 2 vom: 23. Jan., Seite 764-779
1. Verfasser: Ding, Ning (VerfasserIn)
Weitere Verfasser: Deng, Chaorui, Tan, Mingkui, Du, Qing, Ge, Zhiwei, Wu, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364227397
003 DE-627
005 20240114233013.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3328298  |2 doi 
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM364227397 
035 |a (NLM)37930907 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Ning  |e verfasserin  |4 aut 
245 1 0 |a Image Captioning With Controllable and Adaptive Length Levels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image captioning is a core challenge in computer vision, attracting significant attention. Traditional methods prioritize caption quality, often overlooking style control. Our research enhances method controllability, enabling descriptions of varying detail. By integrating a length level embedding into current models, they can produce detailed or concise captions, increasing diversity. We introduce a length-level reranking transformer to correlate image and text complexity, optimizing caption length for informativeness without redundancy. Additionally, with caption length increase, computational complexity grows due to the autoregressive (AR) design of existing methods. To address this, our non-autoregressive (NAR) model maintains constant complexity regardless of caption length. We've developed a training approach that includes refinement sequence training and sequence-level knowledge distillation to close the performance gap between NAR and AR models. In testing, our models set new standards for caption quality on the MS COCO dataset and offer enhanced controllability and diversity. Our NAR model excels over AR models in these aspects and shows greater efficiency with longer captions. With advanced training techniques, our NAR's caption quality rivals that of leading AR models 
650 4 |a Journal Article 
700 1 |a Deng, Chaorui  |e verfasserin  |4 aut 
700 1 |a Tan, Mingkui  |e verfasserin  |4 aut 
700 1 |a Du, Qing  |e verfasserin  |4 aut 
700 1 |a Ge, Zhiwei  |e verfasserin  |4 aut 
700 1 |a Wu, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 2 vom: 23. Jan., Seite 764-779  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:2  |g day:23  |g month:01  |g pages:764-779 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3328298  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 2  |b 23  |c 01  |h 764-779