Automatic identification of illegal construction and demolition waste landfills : A computer vision approach

Copyright © 2023 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 172(2023) vom: 01. Dez., Seite 267-277
1. Verfasser: Yong, Qiaoqiao (VerfasserIn)
Weitere Verfasser: Wu, Huanyu, Wang, Jiayuan, Chen, Run, Yu, Bo, Zuo, Jian, Du, Linwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Computer vision Construction and demolition waste Landfill Remote sensing Industrial Waste
LEADER 01000naa a22002652 4500
001 NLM364177772
003 DE-627
005 20231226094906.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2023.10.023  |2 doi 
028 5 2 |a pubmed24n1213.xml 
035 |a (DE-627)NLM364177772 
035 |a (NLM)37925929 
035 |a (PII)S0956-053X(23)00635-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yong, Qiaoqiao  |e verfasserin  |4 aut 
245 1 0 |a Automatic identification of illegal construction and demolition waste landfills  |b A computer vision approach 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.11.2023 
500 |a Date Revised 28.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier Ltd. All rights reserved. 
520 |a Dozens of landslide accidents are reported at construction and demolition waste (CDW) landfills worldwide every year. Those accidents could be avoided via timely inspection in which the identification of illegal CDW landfills at a large scale plays a critical role. Traditional field surveys are time-consuming, labor-intensive, which is not effective in large-scale detection of landfills. To address this issue, a methodology is proposed in this study for the automatic identification of CDW landfills in large-scale areas by utilizing semantic segmentation of remote sensing imagery. Deep learning is employed to achieve automatic identification and a case study is conducted to showcase the models. The results shown that: (1) The model proposed in this study can effectively identify CDW landfills, with an accuracy of 96.30 % and an IoU of 74.60 %. (2) DeepLabV3+ demonstrated superior performance over Pspnet and HRNet, though HRNet approached DeepLabV3+ in performance with appropriate optimizations. (3) Case study results indicate the potential existence of 52 CDW landfills in Shenzhen, includng 4 official landfills and 48 suspected illegal CDW landfills, mainly in Longhua, Guangming, and Baoan districts. The method proposed in this study provides an effective approache to identify large-scale illegal CDW landfills and has great significance for supervising CDW landfills 
650 4 |a Journal Article 
650 4 |a Computer vision 
650 4 |a Construction and demolition waste 
650 4 |a Landfill 
650 4 |a Remote sensing 
650 7 |a Industrial Waste  |2 NLM 
700 1 |a Wu, Huanyu  |e verfasserin  |4 aut 
700 1 |a Wang, Jiayuan  |e verfasserin  |4 aut 
700 1 |a Chen, Run  |e verfasserin  |4 aut 
700 1 |a Yu, Bo  |e verfasserin  |4 aut 
700 1 |a Zuo, Jian  |e verfasserin  |4 aut 
700 1 |a Du, Linwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 172(2023) vom: 01. Dez., Seite 267-277  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:172  |g year:2023  |g day:01  |g month:12  |g pages:267-277 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2023.10.023  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 172  |j 2023  |b 01  |c 12  |h 267-277